Jul 06, 2018
|Abstract
As silicon photovoltaic technology advances, charge carrier losses at the contacted interfaces of the silicon absorber are coming to dominate power conversion efficiency. The so-called passivated contact, which provides selective charge-carrier extraction while simultaneously reducing interface recombination, is thus of significant interest for next-generation silicon solar cells. However, achieving both low recombination and low resistance to charge carrier extraction has proven challenging. Here, we present a passivated contact technology based on polysilicon deposited using low pressure chemical vapour deposition (LPCVD) over an ultra-thin silicon dioxide layer, which achieves an excellent surface passivation with implied open-circuit voltage of 735 mV, a recombination prefactor below 1 fA cm−2 and contact resistivity below 1 mΩcm2.
Key to this technology is the deposition of an ultra-thin silicon dioxide interlayer under high temperature and low pressure condition, performed in-situ within a single process with the polysilicon deposition. Additionally, the passivating contact structure maintains its electronic properties at temperatures of up to 900°C and is compatible with existing industrial processes. The presented work therefore represents a significant advancement in industrially-applicable passivated contact technology.
Reference | Link |
K. C. Fong, T. C. Kho, W. Liang, T. K. Chong, M. Ernst, D. Walter, M. Stocks, E. Franklin, K. McIntosh, and A. Blakers, “Phosphorus diffused LPCVD polysilicon passivated contacts with in-situ low pressure oxidation,” Solar Energy Materials and Solar Cells 186, 236–242 (2018). | https://doi.org/10.1016/j.solmat.2018.06.039 |
Tags | Recombination, Solar Cell, Polysilicon, LPCVD